Independent component analysis for brain fMRI does not select for independence.

نویسندگان

  • I Daubechies
  • E Roussos
  • S Takerkart
  • M Benharrosh
  • C Golden
  • K D'Ardenne
  • W Richter
  • J D Cohen
  • J Haxby
چکیده

InfoMax and FastICA are the independent component analysis algorithms most used and apparently most effective for brain fMRI. We show that this is linked to their ability to handle effectively sparse components rather than independent components as such. The mathematical design of better analysis tools for brain fMRI should thus emphasize other mathematical characteristics than independence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence

A recent paper by Daubechies et al. claims that two independent component analysis (ICA) algorithms, Infomax and FastICA, which are widely used for functional magnetic resonance imaging (fMRI) analysis, select for sparsity rather than independence. The argument was supported by a series of experiments on synthetic data. We show that these experiments fall short of proving this claim and that th...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Discriminant analysis of functional connectivity patterns on Grassmann manifold

The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an ind...

متن کامل

Large-scale optimization for component analysis of fMRI resting brain data

The use of component analysis on fMRI data is an important neuroimaging computational tool. In this paper we focus on the particular application of extracting the so-called default mode neuronal network from resting brain data ([1] and references therein). While independent component analysis (ICA) is currently the method of choice in this application, we investigate the advantages and limitati...

متن کامل

Statistical Analysis Methods for the fMRI Data

Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 26  شماره 

صفحات  -

تاریخ انتشار 2009